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Abstract

Solving goal-oriented tasks is an important but challenging problem in reinforce-
ment learning (RL). For such tasks, the rewards are often sparse, making it difficult
to learn a policy effectively. To tackle this difficulty, we propose a new approach
called Policy Continuation with Hindsight Inverse Dynamics (PCHID). This ap-
proach learns from Hindsight Inverse Dynamics based on Hindsight Experience
Replay. This work also extends it to multi-step settings with Policy Continuation.
The proposed method is general – it can work in isolation or be combined with other
on-policy and off-policy algorithms. On two multi-goal tasks, namely GridWorld
and FetchReach, PCHID significantly improves the sample efficiency as well as
the final performance.

1 Introduction

Imagine you are given the task of Tower of Hanoi with ten disks, what would you probably do to
solve this complex problem? This game seems daunting at the first glance. However, through trials
and errors, one may discover the key, that is, to recursively relocate the disks on the top of the stack
from one pod to another, assisted by an intermediate one. In this case, you are actually learning skills
from easier sub-tasks and those skills help you to learn more. This case exemplifies the procedure of
self-imitated curriculum learning, namely recursively developing the skills of solving more complex
problems.

Tower of Hanoi belongs to an important kind of challenging problems in Reinforcement Learning
(RL), namely solving the goal-oriented tasks. In such tasks, rewards are usually very sparse. For
example, in many goal-oriented tasks, a single binary reward is provided only when the task is
completed [1, 2, 3]. Previous works attribute the difficulty in reward sparse problems to the low
efficiency in experience collection [4], thus many approaches have been proposed to tackle this prob-
lem, including automatic goal generation [5], self-imitation learning [6] hierarchical reinforcement
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learning [7], curiosity driven methods [8, 9], curriculum learning [1, 10], and Hindsight Experience
Replay (HER) [11]. Most of these works guide the agent by demonstrating on right choices based on
sufficient exploration to improve learning efficiency. HER opens up a new way to learn more from
failures but is limited, as it is only applicable when combined with off-policy algorithms[3].

In this paper we propose an approach of goal-oriented RL called Policy Continuation with Hindsight
Inverse Dynamics (PCHID), which leverages the key idea of self-imitate learning. In contrast to HER,
our method can work as an auxiliary module for both on-policy and off-policy algorithms, or as an
isolated controller itself. Moreover, by learning to predict actions directly from back-propagation [12]
through self-imitation, instead of temporal difference [13] or policy gradient [14, 15, 16, 17], the data
efficiency is greatly improved.

The contributions of this work lie in three aspects: (1) We introduce the state-goal space partition
for multi-goal RL and thereon define Policy Continuation (PC) as a new approach to such tasks.
(2) We propose Hindsight Inverse Dynamics (HID), which extends the vanilla Inverse Dynamics
method to the goal-oriented setting. (3) We further integrate PC and HID into PCHID, which can
effectively leverage self-supervised learning to accelerate the process of reinforcement learning. Note
that PCHID is a general method. Both on-policy and off-policy algorithms can benefit therefrom.
We tested this method on challenging RL problems, where it achieves considerably higher sample
efficiency.

2 Related Work

Hindsight Experience Replay Learning with sparse rewards in RL problems is always a leading
challenge for the rewards are usually uneasy to reach with random explorations. Hindsight Experience
Replay (HER) which relabels the failed rollouts as successful ones is proposed by Andrychowicz et
al. [11] as a method to deal with such problem. The agent in HER receives a reward when reaching
either the original goal or the relabeled goal in each episode by storing both original transition pairs
st, g, at, r and relabeled transitions st, g′, at, r′ in the replay buffer.

Inverse Dynamics Given a state transition pair (st, at, st+1), the inverse dynamics [18] takes
(st, st+1) as the input and outputs the corresponding action at. In previous works, inverse dynamics
is always used to perform feature extraction [19, 9, 20] for policy network optimization. The actions
stored in such transition pairs are always collected with a random policy so that it can barely be
used to optimize the policy network directly. In our work, we use hindsight experience to revise the
original transition pairs in inverse dynamics, and we call this approach Hindsight Inverse Dynamics.
The details will be elucidated in the next section.

Auxiliary Task and Curiosity Driven Method Mirowski et al. [21] propose to jointly learn the
goal-driven reinforcement learning problems with an unsupervised depth prediction task and a
self-supervised loop closure classification task, achieving data efficiency and task performance
improvement. But their method requires extra supervision like depth input.

Shelhamer et al. [20] introduce several self-supervised auxiliary tasks to perform feature extraction
and adopt the learned features to reinforcement learning, improving the data efficiency and returns
of end-to-end learning. Pathak et al. [19] propose to learn an intrinsic curiosity reward besides the
normal extrinsic reward, formulated by prediction error of a visual feature space and improved the
learning efficiency. Both of the approaches belong to self-supervision and utilize inverse dynamics
during training. Although our method can be used as an auxiliary task and trained in self-supervised
way, we improved the vanilla inverse dynamics with hindsight, which enables direct joint training of
policy networks with temporal difference and self-supervised learning.

3 Policy Continuation with Hindsight Inverse Dynamics

In this section we will first briefly go through the preliminaries needed before we introduce our
method in Sec.3.1. In Sec.3.2 we will retrospect a toy example introduced in HER as a motivating
example. Sec.3.3 to 3.5 will depict our method.
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Figure 1: (a): Empirical results in bit-flipping problem. (b): An analogy of flat state space. (c): An
example of the GridWorld domain, which is a non-flat case.

3.1 Preliminaries

Markov Decision Process We consider a Markov Decision Process (MDP) denoted by a tu-
ple (S,A,P, r, γ), where S, A are the finite state and action space, P describes the transition
probability as S × A × S → [0, 1]. r : S → R is the reward function and γ ∈ [0, 1] is the
discount factor. π : S × A → [0, 1] denotes a policy, and an optimal policy π∗ satisfies π∗ =
arg maxπ Es,a∼π[

∑∞
t=0 γ

tr(st)] where at ∼ π(at|st), st+1 ∼ P(st+1|at, st) and an s0 is given as
a start state. When transition and policy are deterministic, π∗ = arg maxπ Es0 [

∑∞
t=0 γ

tr(st)] and
at = π(st), st+1 = T (st, at), where π : S → A is deterministic and T models the deterministic
transition dynamics. The expectation is over all the possible start states.

Universal Value Function Approximators and Multi-Goal RL The Universal Value Function
Approximator(UVFA) [22] extends the state space of Deep Q-Networks(DQN) [23] to include goal
state g ∈ G as part of the input, i.e., st is extended to (st, g) ∈ S × G. And the policy becomes
π : S × G → at, which is pretty useful in the setting with multiple goals to achieve. Moreover,
Schaul et al. (2015) shows that in such setup, the learned policy can be generalized to previous unseen
state-goal pairs. Our application of UVFA on Proximal Policy Optimization algorithms (PPO) [24] is
straightforward. In the following of this work, we will use state-goal pairs to denote the extended
state space (s, g) ∈ S × G, i.e., at = π(st, g), (st+1, g) = T (st, at). The goal g is fixed within an
episode.

3.2 Revisiting the Bit-Flipping Problem

The bit-flipping problem was provided as a motivating example in HER [11], where there are n bits
with the state space S = {0, 1}n and the action spaceA = {0, 1, ..0, n−1}. An action a corresponds
to turn the a-th bit of the state. Each episode starts with a randomly generated state s0 and a random
goal state g. Only when the goal state g is reached the agent will receive a reward. HER proposed
to relabel the failed trajectories to receive more reward signals thus enable the policy to learn from
failures. However, the method is based on temporal difference thus the efficiency of data is limited.
As we can learn from failures, here comes the question that can we learn a policy by supervised
learning where the data is generated using hindsight experience?

Inspired by the self-imitate learning ability of human, we aim to employ self-imitation to learn how to
get success in RL even when the original goal has not yet achieved. A straightforward way to utilize
self-imitate learning is to adopt the inverse dynamics. However, in most cases the actions stored in
inverse dynamics are irrelevant to the goals.

Specifically, transition pairs like ((st, g), (st+1, g), at) are saved to learn the inverse dynamics of
goal-oriented tasks. And the learning process can be executed simply as classification when action
space is discrete or regression when action space is continuous. Given a neural network parameterized
by φ, the target of learning inverse dynamics is to get

φ = arg min
φ

∑
st,st+1,at

||fφ((st, g), (st+1, g))− at||2 (1)

Due to the unawareness of the goals while the agent is taking actions, the goals g in Eq.(1) are
only placeholders. Thus, it will cost nothing to replace g with g′ = m(st+1) but result in a more
meaningful form, i.e., encoding the following state as a hindsight goal. That is to say, if the agent
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wants to reach g′ from st, it should take the action of at, thus the decision making process is aware
of the hindsight goal.

We adopt fφ in Eq.(1) as an additional module incorporating with HER in the Bit-flipping environment
by simply adding up their logit outputs. As shown in Fig.1(a), such additional module leads to distinct
improvement. We attribute this success to the flatness of the state space. Fig.1(b) shows an analogy
of such flatness case where an agent in a grid map is asked to reach the goal g3 starting from s0: if
the agent has already known how to reach s1 in the east, intuitively, it is not hard to extrapolate its
policy to reach g3 in the farther east.

Nevertheless, successes are not always within effortless reach. Reaching the goals of g1 and g2 are
relatively harder tasks, and navigating in the GridWorld domain shown in Fig.1(c) is even more
challenging. To further employ self-imitate learning and overcome the single step limitation of
inverse dynamics, we come up with a new approach of RL, called Policy Continuation with Hindsight
Inverse Dynamics.

3.3 Perspective of Policy Continuation on Multi-Goal RL Task

Our approach is mainly based on policy continuation over sub-policies, which can be viewed as an
emendation of the spontaneous extrapolation in the bit-flipping case.

Definition 1: Policy Continuation(PC) Suppose π is a policy function defined on a non-empty
sub-state-space SU of the state space S , i.e., SU ⊂ S. If SV is a larger subset of S , containing SU ,
i.e., SU ⊂ SV and Π is a policy function defined on SV such that

Π(s) = π(s) ∀s ∈ SU
then we call Π a policy continuation of π, or we can say the restriction of Π to SU is the policy
function π.

Denote the optimal policy as π∗ : (st, gt)→ at, we introduce the concept of k-step solvability:

Definition 2: k-Step Solvability Given a state-goal pair (s, g) as a task of a certain system with
deterministic dynamics, if reaching the goal g needs at least k steps under the optimal policy π∗
starting from s, i.e., starting from s0 = s and execute ai = π∗(si, g) for i = {0, 1, ..., k − 1}, the
state sk = T (sk−1, ak−1) satisfies m(sk) = g, we call the pair (s, g) has k-step solvability, or (s, g)
is k-step solvable.

where we follow HER to assume a mappingm : S → G s.t. ∀s∈Sr(s,m(s)) = 1, i.e., the information
of a goal g is encoded in state s. For the simplest case we have s as identical mapping and S = G
where the goal g is represented as a certain state s of the system.

Drawing on the experience of human’s inherent ability to learn by self-supervision and recursive
auto-curriculum, we can divide the finite state-goal space into T + 2 parts according to their k-step
solvability,

S × G = (S × G)0 ∪ (S × G)1 ∪ ... ∪ (S × G)T ∪ (S × G)U (2)

where (s, g) ∈ S×G, T is a finite time-step horizon that we suppose the task should be solved within,
and (S ×G)i, i ∈ {0, 1, 2, ...T} denotes the set of i-step solvable state-goal pairs, (s, g) ∈ (S ×G)U
denotes unsolvable state-goal pairs, i.e., (s, g) is not k-step solvable for ∀k ∈ {0, 1, 2, ..., T}, and
(S × G)0 is the trivial case g = m(s0). As the optimal policy only aims to solve the solvable
state-goal pairs, we can take (S × G)U out of consideration. It is clear that we can define a disjoint
sub-state-goal space union for the solvable state-goal pairs

Definition 3: Solvable State-Goal Space Partition Given a certain environment, any solvable
state-goal pairs can be categorized into only one sub state-goal space by the following partition

S × G\(S × G)U =

T⋃
j=0

(S × G)j (3)

Then, we define a set of sub-policies {πi}, i ∈ {0, 1, 2, ..., T} on solvable sub-state-goal space⋃i
j=0(S × G)j respectively, with the following definition
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Figure 2: Test whether the transitions are 2-step (left) or k-step (right) solvable. The TEST function
will return True if the transition st → st+k needs at least k steps.

Definition 4: Sub Policy on Sub Space πi is a sub-policy defined on the sub-state-goal space
(S × G)i. We say π∗i is an optimal sub-policy if it is able to solve all i-step solvable state-goal pair
tasks in i steps.

Corollary 1: If {π∗i } is restricted as a policy continuation of {π∗i−1} for ∀i ∈ {1, 2, ...k}, π∗i is
able to solve any i-step solvable problem for i ≤ k. By definition, the optimal policy π∗ is a policy
continuation of the sub policy π∗T , and π∗T is already a substitute for the optimal policy π∗.

We can recursively approximate π∗ by expanding the domain of sub-state-goal space in policy
continuation from an optimal sub-policy π∗0 . While in practice, we use neural networks to approximate
such sub-policies to do policy continuation. We propose to parameterize a policy function π = fθ
by θ with neural networks and optimize fθ by self-supervised learning with the data collected by
Hindsight Inverse Dynamics (HID) recursively and optimize πi by joint optimization.

3.4 Hindsight Inverse Dynamics

One-Step Hindsight Inverse Dynamics One step HID data can be collected easily. With n
randomly rollout trajectories {(s0, g), a0, r0, (s1, g), a1, ..., (sT , g), aT , rT }i, i ∈ {1, 2, ..., n}, we
can use a modified inverse dynamics by substituting the original goal g with hindsight goal g′ =
m(st+1) for every st and result in {(s0,m(s1)), a0, (s1,m(s2)), a1, ..., (sT−1,m(sT )), aT−1}i, i ∈
{1, 2, ..., n}. We can then fit fθ1 by

θ1 = arg min
θ

∑
st,st+1,at

||fθ((st,m(st+1)), (st+1,m(st+1)))− at||2 (4)

By collecting enough trajectories, we can optimize fθ implemented by neural networks with stochastic
gradient descent [25]. When m is an identical mapping, the function fθ1 is a good enough approxi-
mator for π∗1 , which is guaranteed by the approximation ability of neural networks [26, 27, 28]. Oth-
erwise, we should adapt equation (4) as θ1 = arg minθ

∑
st,st+1,at

||fθ((st,m(st+1)),m(st+1))−
at||2, i.e., we should omit the state information in future state st+1, to leverage fθ1 as a policy.

Multi-Step Hindsight Inverse Dynamics Once we have fθk−1
, an approximator of π∗k−1, k-

step HID is ready to get. We can collect valid k-step HID data recursively by testing whether
the k-step HID state-goal pairs indeed need k steps to solve, i.e., for any k-step transitions
{(st, g), at, rt, ..., (st+k, g), at+k, rt+k}, if our policy π∗k−1 at hand can not provide with an-
other solution from (st,m(st+k)) to (st+k,m(st+k)) in less than k steps, the state-goal pair
(st,m(st+k)) must be k-step solvable, and this pair together with the action at will be marked
as (s

(k)
t ,m(s

(k)
t+k)), a

(k)
t . Fig.2 illustrates this process. The testing process is based on a function

TEST(·) and we will focus on the selection of TEST in Sec.3.5. Transition pairs like this will
be collected to optimize θk. In practice, we leverage joint training to ensure fθk to be a policy
continuation of π∗i , i ∈ {1, ..., k} i.e.,

θk = arg min
θ

∑
s
(i)
t ,s

(i)
t+i,a

(i)
t ,i∈{1,...,k}

||fθ((st,m(st+i)), (st+i,m(st+i)))− at||2 (5)

The combination of PC and with multi-step HID leads to our algorithm PCHID. PCHID can work
alone or as an auxiliary module with other RL algorithms.
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Algorithm 1 PCHID Module
Require
• a policy πb(s, g)

• a reward function r(s, g) = 1 if g = m(s) else 0

• a buffer for PCHID B = {B1,B2, ...,BT−1}
• a list K

Initialize πb(s, g), B, K = [1]
for episode = 1,M do

generate s0, g by the system
for t = 0, T − 1 do

Select an action by the behavior policy at = πb(st, g)
Execute the action at and get the next state st+1

Store the transition ((st, g), at, (st+1, g)) in a temporary episode buffer
end for
for t = 0, T − 1 do

for k ∈ K do
calculate additional goal according to st+k by g′ = m(st+k)
if TEST(k, st, g′) = True then

Store (st, g
′, at) in Bk

end if
end for

end for
Sample a minibatch B from buffer B
Optimize behavior policy πb(st, g′) to predict at by supervised learning
if Converge then

Add max(K) + 1 in K
end if

end for

The full algorithm of the PCHID is presented as Algorithm.1.

3.5 On the Selection of TEST(·) Function

In Algorithm 1, a crucial step to extend the (k − 1)-step sub policy to k-step sub policy is to test
whether a k-step transition st → st+k in a trajectory is indeed a k-step solvable problem if we regard
st as a start state s0 and m(st+k) as a goal g. We propose two approaches and evaluate both in Sec.4.

Interaction A straightforward idea is to reset the environment to st and execute action at by policy
πk−1, followed by execution of at+1, at+2, ..., and record if it achieves the goal in less than k steps.
We call this approach Interaction for it requires the environment to be resettable and interact with
the environment. This approach can be portable when the transition dynamics is known or can be
approximated without heavy computation expense.

Random Network Distillation (RND) Given a state as input, the RND [29] is proposed to provide
exploration bonus by comparing the output difference between a fixed randomly initialized neural
network NA and another neural network NB , which is trained to minimize the output difference
between NA and NB with previous states. After training NB with 1, 2, ..., k − 1 step transition pairs
to minimize the output difference between NA and NB , since NB has never seen k-step solvable
transition pairs, these pairs will be differentiated for they lead to larger output differences.

4 Experiments

As a policy π(s, g) aims at reaching a state s′ where m(s′) = g, by intuition the difficulty of solving
such a goal-oriented task depends on the complexity of m. In Sec.4.1 we start with a simple case
where m is an identical mapping in the environment of GridWorld by showing the agent a fully
observable map. Moreover, the GridWorld environment permits us to use prior knowledge to calculate
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Figure 3: (a): The rollout success rate on test maps in 10 experiments with different random seeds.
HER outperforms VIN, but the difference disappears when combined with PCHID. PCHID-1 and
PCHID-5 represent 1-step and 5-step PCHID. (b): Performance of PCHID module alone with
different TEST functions. The blue line is from ground truth testing results, the orange line and
green line are Interaction and RND respectively, and the red line is the 1-step result as a baseline.
(c)(d): Test accuracy and recall with Interaction and RND method under different threshold.

the accuracy of any TEST function. We show that PCHID can work independently or augmented
with the DQN in discrete action space setting, outperforming the DQN as well as the DQN augmented
with HER. The GridWorld environment corresponds to the identical mapping case G = S . In Sec.4.2
we test our method on a continuous control problem, the FetchReach environment provided by
Plappert et al. [3]. Our method outperforms PPO by achieving 100% successful rate in about 100
episodes. We further compare the sensitivity of PPO to reward values and the robustness PCHID
owns. The state-goal mapping of FetchReach environment is G ⊂ S.

4.1 GridWorld Navigation

We use the GridWorld navigation task in Value Iteration Networks (VIN) [30], in which the state
information includes the position of the agent, and an image of the map of obstacles and goal position.
In our experiments we use 16× 16 domains, navigation in which is not an effortless task. Fig.1(c)
shows an example of our domains. The action space is discrete and contains 8 actions leading the
agent to its 8 neighbour positions respectively. A reward of 10 will be provided if the agent reaches
the goal within 50 timesteps, otherwise the agent will receive a reward of −0.02. An action leading
the agent to an obstacle will not be executed, thus the agent will stay where it is. In each episode, a
new map will randomly selected start s and goal g points will be generated. We train our agent for
500 episodes in total so that the agent needs to learn to navigate within just 500 trials, which is much
less than the number used in VIN [30].1 Thus we can demonstrate the high data efficiency of PCHID
by testing the learned agent on 1000 unseen maps. Our work follows VIN to use the rollout success
rate as the evaluation metric.

Our empirical results are shown in Fig.3. Our method is compared with DQN, both of which are
equipped with VIN as policy networks. We also apply HER to DQN but result in a little improvement.
PC with 1-step HID, denoted by PCHID 1, achieves similar accuracy as DQN in much less episodes,
and combining PC with 5-step HID, denoted by PCHID 5, and HER results in much more distinctive
improvement.

4.2 OpenAI Fetch Env

In the Fetch environments, there are several tasks based on a 7-DoF Fetch robotics arm with
a two-fingered parallel gripper. There are four tasks: FetchReach, FetchPush, FetchSlide and
FetchPickAndPlace. In those tasks, the states include the Cartesian positions, linear velocity of the
gripper, and position information as well as velocity information of an object if presented. The goal
is presented as a 3-dimentional vector describing the target location of the object to be moved to. The
agent will get a reward of 0 if the object is at the target location within a tolerance or −1 otherwise.
Action is a continuous 4-dimentional vector with the first three of them controlling movement of the
gripper and the last one controlling opening and closing of the gripper.

FetchReach Here we demonstrate PCHID in the FetchReach task. We compare PCHID with
PPO and HER based on PPO. Our work is the first to extend hindsight knowledge into on-policy

1Tarmar et al. train VIN through the imitation learning (IL) with ground-truth shortest paths between start
and goal positions. Although both of our approaches are based on IL, we do not need ground-truth data

7



0 100 200 300 400 500 600
Episode

50

45

40

35

30

25

20

15

Re
wa

rd

Reward Obtain
HER
PPO
PPO r10
PCHID
PCHID + HER
PCHID + PPO

0 100 200 300 400 500 600
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Success Rate

HER
PPO
PPO r10
PCHID
PCHID + HER
PCHID + PPO

Figure 4: (a): The FetchReach environment. (b): The reward obtaining process of each method.
In PPO r10 the reward of achieving the goal becomes 10 instead of 0 as default, and the reward is
re-scaled to be comparable with other approaches. This is to show the sensitivity of PPO to reward
value. By contrast, the performance of PCHID is unrelated to reward value. (c): The success rate
of each method. Combining PPO with PCHID brings about little improvement over PCHID, but
combining HER with PCHID improves the performance significantly.

algorithms [3]. Fig.4 shows our results. PCHID greatly improves the learning efficiency of PPO.
Although HER is not designed for on-policy algorithms, our combination of PCHID and PPO-based
HER results in the best performance.

4.3 Combing PCHID with Other RL Algorithms

As PCHID only requires sufficient exploration in the environment to approximate optimal sub-policies
progressively, it can be easily plugged into other RL algorithms, including both on-policy algorithms
and off-policy algorithms. At this point, the PCHID module can be regarded as an extension of HER
for off-policy algorithms. We put forward three combination strategies and evaluate each of them on
both GridWorld and FetchReach environment.

Joint Training The first strategy for combining PCHID with normal RL algorithm is to adopt a
shared policy between them. A shared network is trained through both temporal difference learning
in RL and self-supervised learning in PCHID. The PCHID module in joint training can be viewed as
a regularizer.

Averaging Outputs Another strategy for combination is to train two policy networks separately,
with data collected in the same set of trajectories. When the action space is discrete, we can simply
average the two output vectors of policy networks, e.g. the Q-value vector and the log-probability
vector of PCHID. When the action space is continuous, we can then average the two predicted action
vectors and perform an interpolated action. From this perspective, the RL agent here actually learns
how to work based on PCHID and it parallels the key insight of ResNet [31]. If PCHID itself can
solve the task perfectly, the RL agent only needs to follow the advice of PCHID. Otherwise, when it
comes to complex tasks, PCHID will provide basic proposals of each decision to be made. The RL
agent receives hints from those proposals thus the learning becomes easier.

Intrinsic Reward (IR) This approach is quite similar to the curiosity driven methods. Instead of
using the inverse dynamics to define the curiosity, we use the prediction difference between PCHID
module and RL agent as an intrinsic reward to motivate RL agent to act as PCHID. Maximizing the
intrinsic reward helps the RL agent to avoid aimless explorations hence can speed up the learning
process.

Fig.5 shows our results in GridWorld and FetchReach with different combination strategies. Joint
training performs the best and it does not need hyper-parameter tuning. On the contrary, averaging
outputs requires determining the weights and intrinsic reward requires adjusting its scale with regard
to the external reward.

5 Conclusion

In this work we propose the Policy Continuation with Hindsight Inverse Dynamics (PCHID) to solve
the goal-oriented reward sparse tasks from a new perspective. Our experiments show the PCHID is
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Figure 5: (a): Accuracy of GridWorld under different combination strategies. (b): Averaging outputs
with different weights. (c): Obtained Reward of FetchReach under different strategies.

able to improve data efficiency remarkably in both discrete and continuous control tasks. Moreover,
our method can be incorporated with both on-policy and off-policy RL algorithms flexibly.
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