
PolyNet: A Pursuit of Structural Diversity in Very Deep Networks

Xingcheng Zhang∗ Zhizhong Li∗ Chen Change Loy Dahua Lin
{zx016, lz015, ccloy, dhlin}@ie.cuhk.edu.hk

Abstract

A number of studies have shown that increasing the
depth or width of convolutional networks is a rewarding ap-
proach to improve the performance of image recognition. In
our study, however, we observed difficulties along both di-
rections. On one hand, the pursuit for very deep networks is
met with a diminishing return and increased training diffi-
culty; on the other hand, widening a network would result in
a quadratic growth in both computational cost and memory
demand. These difficulties motivate us to explore structural
diversity in designing deep networks, a new dimension be-
yond just depth and width. Specifically, we present a new
family of modules, namely the PolyInception, which can
be flexibly inserted in isolation or in a composition as re-
placements of different parts of a network. Choosing Poly-
Inception modules with the guidance of architectural effi-
ciency can improve the expressive power while preserving
comparable computational cost. The Very Deep PolyNet1,
designed following this direction, demonstrates substantial
improvements over the state-of-the-art on the ILSVRC 2012
benchmark. Compared to Inception-ResNet-v2, it reduces
the top-5 validation error on single crops from 4.9% to
4.25%, and that on multi-crops from 3.7% to 3.45%.

1. Introduction
The past four years witnessed a dramatic reduction of

classification error on the ILSVRC benchmark [19]. Along
with this progress is a remarkable increase in network depth
– from AlexNet [16] to ResNet [9], the numbers of layers
have been raised from 8 to 152. This strong correlation
between performance and depth has motivated a series of
work [10, 21] to pursue very deep networks. On the other
hand, increasing the width of a network has also been shown
to be an effective way to improve performance [1, 28, 33].
This line of exploration also draws lots of attention recently.

Is increasing the depth or width the best strategy to pur-
sue optimal performance? Whereas a positive answer to
this question seems to be backed by numerous evidences

∗These two authors contribute equally to the work.
1Codes available at https://github.com/CUHK-MMLAB/polynet.

Image

Output

4.25

4.48

4

4.4

4.8

5.2

5.6

100 200 300 400 500 600 700

To
p-

5
Er

ro
r

Convolution Layers

PolyNet Series
Inception-ResNet-v2 Series

Figure 1: We propose a new family of building blocks called
PolyInceptions. PolyNet, a new network architecture using Poly-
Inceptions, outperforms Inception-ResNet-v2 and a deepened ver-
sion thereof, reducing the single-crop top-5 error to 4.25% on
ILSVRC 2012 validation set.

in previous work, our empirical study suggested otherwise.
Specifically, we found that as we continue to increase the
depth, the reward is diminishing beyond a certain level.
Another direction, namely, widening a network, also has
its own problems. The most significant problem is the
quadratic growth in both runtime complexity and memory
demand. Our study showed that this significant increase in
computational cost may not be justified by the performance
gain that it brings.

These issues motivate us to explore structural diversity,
an alternative dimension in network design. Actually, the
significance of diversity has been repeatedly demonstrated
in previous work, such as Inception modules [26], network
ensembles [15], and a recent study [30] that relates ResNet
with an implicit ensemble. However, several questions re-
main yet to be answered: (1) what is the best way to build
diversity into a network, and (2) when the pursuit of diver-
sity is a more rewarding strategy than the pursuit of depth.

In this work, we propose a new family of modules called
PolyInception. Specifically, each PolyInception module is a
“polynomial” combination of Inception units, which inte-
grates multiple paths in a parallel or cascaded fashion, as il-
lustrated in Fig. 1. Compared to the conventional paradigm
where basic units are stacked sequentially, this alternative
design can substantially enhance the structural diversity of a
network. Note that the PolyInception modules are designed
to serve as building blocks of large networks, which can be
inserted in isolation or in a composition to replace exist-
ing modules. We also present an ablation study that com-
pares the performances and costs of various module config-
urations under different conditions, which provides useful
guidance for network design.

Based on a systematic comparison of different designing
choices, we devise a new network called Very Deep PolyNet,
which comprises three stages operating on different spatial
resolutions. PolyInception modules of different configs are
carefully chosen for each stage. On the ILSVRC 2012 val-
idation set, the Very Deep PolyNet achieves a top-5 error
rate 4.25% on single-crop and 3.45% on multi-crop. Com-
pared to Inception-ResNet-v2 [25], the latest state-of-the-
art which obtains top-5 error rates 4.9% (single-crop) and
3.7% (multi-crop), this is a substantial improvement. Fur-
thermore, Very Deep PolyNet also outperforms a deepened
version of Inception-ResNet-v2 under the same computa-
tional budget, with a considerably smaller parameter size
(92M vs. 133M).

Overall, the major contributions of this work consist in
several aspects: (1) a systematic study of structural diver-
sity, an alternative dimension beyond depth and width, (2)
PolyInception, a new family of building blocks for con-
structing very deep networks, and (3) Very Deep PolyNet,
a new network architecture that obtains best single network
performance on ILSVRC.

2. Related Work
The depth revolution is best depicted by the various suc-

cessful convolutional neural networks in the ImageNet chal-
lenge [19]. These networks, from AlexNet [16], VGG [21],
GoogleNet [26], to ResNet [9], adopted increasingly deeper
architectures, However, very deep networks are difficult to
train, prone to overfitting, and sometimes even leading to
performance degradation, as reported in [2, 6, 8, 23, 24].
Residual structures [9, 10] substantially mitigate such is-
sues. One of the reason is that it introduces identity paths
that can efficiently pass signals both forward and backward.
Techniques like BN [14] and dropout [23] also facilitate the
training process. In addition, extensive studies [7, 8, 18, 27]
have been done to find good design choices, e.g. those in
depth, channel sizes, filter sizes, and activation functions.

Some recent studies challenged that depth is not the se-
cret ingredient behind the success of ResNet. One of the

arguments is that more powerful residual blocks with en-
hanced representation capabilities can also achieve similar
or even better performance without going too deep. Wide
residual networks (WRN) [33] increases width while re-
ducing depth. Zhang et al. [34] propose ResNet of ResNet
(RoR). Targ et al. [28] propose ResNet in ResNet (RiR),
which generalizes residuals to allow more effective learn-
ing. Multi-residual networks [1] extends ResNet in a differ-
ent way by combining multiple parallel blocks.

From another perspective, the residual structure can be
seen as an exponential ensemble of relatively shallow net-
works. Veit et al. [30] hypothesized that the power lies in
this ensemble. Networks that utilize this implicit ensem-
ble are called ensemble by structure. One can also encour-
age the formation of ensemble during the learning process,
which is called ensemble by train. Stochastic depth tech-
nique [13] randomly drops a subset of layers in training.
The process can be interpreted as training an ensemble of
networks with different depths. This way not only eases
the training of very deep networks, but also improves per-
formance. Swapout [22] is a stochastic training method
that generalizes dropout and stochastic depth by using ran-
dom variables to control whether units are kept or dropped.
Some recently designed networks [1, 17, 22] embrace this
ensemble interpretation.

Shortcut paths in residual networks and Highway net-
works [24] inspire explorations on more general topological
structures rather than the widely adopted linear formation.
Two of such examples are DenseNet [12], which adds short-
cuts densely to the building blocks, and FractalNet [17],
which uses a truncated fractal layout.

Inception-ResNet-v2 [25] achieved so far the best pub-
lished single model accuracy on ImageNet to our knowl-
edge. It is a combination of the latest version of Incep-
tion structure and the residual structure, in which Inception
blocks are used to capture the residuals. Inception blocks
are the fundamental components of GoogleNet [26]. Their
structures have been optimized and fine-tuned for several it-
erations [25, 26, 27]. We adopt Inception-ResNet-v2 as the
base model in our study.

3. PolyInception and PolyNet
Depth, the number of layers, and width, the dimension

of intermediate outputs, are two important dimensions in
network design. When one wants to improve a network’s
performance, going deeper and going wider are the most
natural choices provided that the computational budget al-
lows. The ultimate goal of this study is to push forward the
state of the art of deep convolutional networks. Hence, like
many others, we begin with these two choices.

As mentioned, the benefit of going deeper has been
clearly manifested in the evolution of deep network archi-
tectures over the past several years [9, 10, 21, 26]. Follow-

ResNet 50

ResNet 101

ResNet 152

ResNet 269 ResNet 500

92.5

93

93.5

94

94.5

95

95.5

0 50 100 150 200

To
p-

5
A

cc
ur

ac
y

Number of Residual Units

Figure 2: Top-5 single crop accuracies of ResNets [10] with dif-
ferent number of residual units on the ILSVRC 2012 validation
set. As the number of residual units increases beyond 100, we can
see that the return diminishes.

ing this path, we continue to stack residual units on top
of ResNet-152. As shown in Fig. 2, we can still observe
significant performance gain when the number of residual
units is increased from 16 (ResNet-50) to 89 (ResNet-269).
Yet, as we further increase the number to 166 (ResNet-500),
the reward obviously diminishes. The cost doubles, while
the error rate decreases from 4.9% to 4.8%, only by 0.1%.
Clearly, the strategy of increasing the depth becomes less
effective when the depth goes beyond a certain level. The
other direction, namely going wider [33], also has its own
issues. When we increase the numbers of channels of all
layers by a factor of k, both the computational complexity
and the memory demand increases by a factor of k2. This
quadratic growth in computational cost severely limits the
extent one can go along this direction.

The difficulties met by both directions motivate us to ex-
plore alternative ways. Revisiting previous efforts in deep
learning, we found that diversity, another aspect in network
design that is relatively less explored, also plays a signif-
icant role. This is manifested in multiple ways. First,
ensembles usually perform better than any individual net-
works therein – this has been repeatedly shown in previ-
ous studies [3, 5, 11, 20]. Second, as revealed by recent
work [13, 30], ResNets, which have obtained top perfor-
mances in a number of tasks, can be viewed as an implicit
ensemble of shallow networks. It is argued that it is the mul-
tiplicity instead of the depth that actually contributes to their
high performance. Third, Inception-ResNet-v2, a state-of-
the-art design developed by Szegedy et al. [25], achieves
considerably better performance than ResNet with substan-
tially fewer layers. Here, the key change as compared to
ResNet is the replacement of the simple residual unit by
the Inception module. This change substantially increases
the structural diversity within each unit. Together, all these
observations imply that diversity, as a key factor in deep
network design, is worthy of systematic investigation.

�.043

�'�!

�

�/.5

�/.5

�43043

�.043

�'�!

�

�/.5

�/.5

�43043

�/.5

�/.5

�/.5

�.043

�'�!

�

�'2+&4#,
'

�43043

Figure 3: Left: residual unit of ResNet [9]. Middle: type-B In-
ception residual unit of Inception-ResNet-v2 [25]. Right: abstract
residual unit structure where the residual block is denoted by F .

3.1. PolyInception Modules

Motivated by these observations, we develop a new fam-
ily of building blocks called PolyInception modules, which
generalize the Inception residual units [25] via various
forms of polynomial compositions. This new design not
only encourages the structural diversity but also enhances
the expressive power of the residual components.

To begin with, we first revisit the basic design of a resid-
ual unit. Each unit comprises two paths from input to out-
put, namely, an identity path and a residual block. The for-
mer preserves the input while the latter turns the input into
residues via nonlinear transforms. The results of these two
paths are added together at the output end of the unit, as

(I + F) · x = x+ F · x := x+ F (x). (1)

This formula represents the computation with operator no-
tations: x denotes the input, I the identity operator, and F
the nonlinear transform carried out by the residual block,
which can also be considered as an operator. Moreover,
F · x indicates result of the operator F acting on x. When
F is implemented by an Inception block, the entire unit be-
comes an Inception residual unit as shown in Fig. 3. In
standard formulations, including ResNet [9] and Inception-
ResNet [25], there is a common issue – the residual block
is very shallow, containing only 2 to 4 convolutional layers.
This restricts the capacity of each unit, and as a result, it
needs to take a large number of units to build up the over-
all expressive power. Whereas several variants have been
proposed to enhance the residual units [1, 28, 34], the im-
provement, however, remains limited.

Driven by the pursuit of structural diversity, we study an
alternative approach, that is, to generalize the additive com-
bination of operators in Eq. (1) to polynomial compositions.
For example, a natural extension of Eq. (1) along this line is
to simply add a second-order term, which would result in a
new computation unit as

(I + F + F 2) · x := x+ F (x) + F (F (x)). (2)

�.043

�'�!

�

�.%'03+/.

'

�43043

�.%'03+/.

'

�.%'03+/.

'

(a) poly-2

�.043

�'�!

�

�43043

�.%'03+/.

'

�.%'03+/.

'

(b) poly-2

�.043

�'�!

�

�43043

�.%'03+/.

'

�.%'03+/.

(

(c) mpoly-2

�.043

�'�!

�

�43043

�.%'03+/.

'
�.%'03+/.

(

(d) 2-way

Figure 4: Examples of PolyInception structures.

The corresponding architecture is shown in Fig. 4 (a). This
unit comprises three paths, namely, an identity path, a first-
order path that contains one Inception block, and a second-
order path that contains two. The signals resulted from these
paths will be summed together at the output end, before the
ReLU layer. Here, the second-order path allows the input
signal to go through deeper transformations before being
merged back to the main path. This can considerably in-
crease the expressive power of the unit.

It is noteworthy that along both the first-order and
second-order paths, the outputs of the first Inception block
are the same, that is, F (x). Taking advantage of this ob-
servation, we can reduce the architecture in Fig. 4 (a) to a
cascaded form as shown in Fig. 4 (b). These two forms
are mathematically equivalent; however, the computational
cost of the latter is only 2/3 of the former. Note that the
cascaded form can be reflected by an algebraic rewriting as
I+(I+F)F . As such an extension embodies a polynomial
composition of the Inception blocks, we call it a PolyIncep-
tion module. The maximum number of Inception blocks
along a path is referred to as the order of the module.

Figure 4 illustrates several PolyInception modules which
differ in how the Inception blocks are composed and
whether they share parameters. For convenience, we re-
fer to them as poly-2, mpoly-2, and 2-way respectively. The
following discussion compares their characteristics.

• poly-2: I + F + F 2. This unit contains two Inception
blocks, both denoted by F . This is a notational conven-
tion indicating that they share parameters. This design
can increase the representation power without introduc-
ing additional parameters.

• mpoly-2: I + F + GF . The structure of this design is
similar to poly-2, except that the two Inception blocks do
not share parameters. Similar to poly-2, the computation
of the first layer along both 1st- and 2nd-order paths can
be shared (both denoted by F), and thus it can also be
reduced into an equivalent cascaded form (I+(I+G)F),
as shown in Fig. 4 (c). Compare to poly-2, it possesses
stronger expressive power. At the same time, however,
the parameter size also doubles.

Input Stem A to B
5 x

IR-A
B to C Loss

10 x
IR-B

5 x
IR-C

Input Stem A to B

3 x
Poly-

Inception
A

B to C Loss

6 x
Poly-

Inception
B

3 x
Poly-

Inception
C

Figure 5: Upper: The overall schema of Inception-ResNet-v2.
Adapted from [25]. IR-A, IR-B and IR-C are three types of In-
ception residual units designed for stage A, B and C, respec-
tively. They are repeated multiple times and be serially connected.
This configuration is denoted as IR 5-10-5 for reference. Lower:
Schema of PolyNet. The design is based on the above schema
with the modification that Inception residual units are replaced by
PolyInceptions. The number of blocks in each stage might change
for different models.

• 2-way: I + F + G. This is a first-order PolyInception,
with an extra first-order path incorporated into the unit.
This construction is similar to the building blocks used
in the Multiple Residual Network [1].

These exemplar designs can be further extended based
on the relations between operator polynomials and network
architectures. For instance, poly-2 and mpoly-2 can be
extended to higher-order PolyInception modules, namely,
poly-3 (I+F+F 2+F 3) and mpoly-3 (I+F+GF+HGF).
Compared to their 2nd-order counterparts, the extended
versions have greater expressive power, but also incur in-
creased computational cost. Similarly, 2-way can also be
extended to 3-way.

3.2. An Ablation Study

Before proceeding to the design of the entire network, we
first study how the PolyInceptions can influence the overall
performance. The study uses a trimmed down version of
the Inception-ResNet-v2 (IR-v2) [25] as the baseline model.
As shown in Fig. 5 (a), IR-v2 comprises three stages A, B, C
that operate on different spatial resolutions (35×35, 17×17,
and 8 × 8). These stages respectively contain 5, 10, and
5 Inception residual units. Hence, we denote the standard
version of IR-v2 as IR 5-10-5. This is a very large network.
As we need to investigate a number of configurations in this
study, to speed up the experiments, we scaled down the size
a bit to IR 3-6-3, and used it as the baseline model.

In this study, we constructed a number of variant ver-
sions of IR 3-6-3. In each version, we choose one stage
(from A, B, and C) and replace all the Inception residual
units therein with one of the six PolyInception modules in-
troduced above (2-way, 3-way, poly-2, poly-3, mpoly-2, and
mpoly-3). Hence, we have 18 configs in total (except the
baseline). We trained networks for these configs, using the
same training strategies and hyper-parameters, which will
be detailed in Sec. 4.

IR 3-6-3
2-way A

3-way A

poly-2 A
poly-3 A

mpoly-2 A mpoly-3 A

94.1

94.2

94.3

94.4

94.5

94.6

94.7

650 700 750 800 850

To
p-

5
A

cc
ur

ac
y

Time / Iter (ms)

IR 3-6-3

2-way B
3-way B

poly-2 B

poly-3 B

mpoly-2 B

mpoly-3 B

94.1

94.2

94.3

94.4

94.5

94.6

94.7

600 700 800 900 1000 1100

To
p-

5
A

cc
ur

ac
y

Time / Iter (ms)

IR 3-6-3

2-way C

3-way C

poly-2 C

poly-3 Cmpoly-2 C

mpoly-3 C

94.1

94.2

94.3

94.4

94.5

94.6

94.7

650 700 750 800

To
p-

5
A

cc
ur

ac
y

Time / Iter (ms)

IR 3-6-3

2-way A

3-way A

poly-2 A

poly-3 A

mpoly-2 A mpoly-3 A

94.1

94.2

94.3

94.4

94.5

94.6

94.7

21.2 21.6 22 22.4 22.8

To
p-

5
A

cc
ur

ac
y

Parameters (M)

IR 3-6-3

2-way B 3-way B

poly-2 B

poly-3 B

mpoly-2 B

mpoly-3 B

94.1

94.2

94.3

94.4

94.5

94.6

94.7

20 25 30 35 40

To
p-

5
A

cc
ur

ac
y

Parameters (M)

IR 3-6-3

2-way C

3-way C

poly-2 C

poly-3 C
mpoly-2 C

mpoly-3 C

94.1

94.2

94.3

94.4

94.5

94.6

94.7

20 25 30 35

To
p-

5
A

cc
ur

ac
y

Parameters (M)

Figure 6: Comparison of different PolyInception configurations on 3-6-3 the scale. y-axis is the single crop top-5 accuracy on the ILSVRC
2012 validation set. The first row measures the accuracy v.s. computational cost, where the x-axis is the running time per iteration in real
experiment. The second row shows the efficiency of parameters. The three columns are configurations that modify stage A, B and C,
respectively. In these figures, the upper left area means higher accuracy with less time complexity or less parameter size.

Figure 6 compare the cost efficiency of different configs,
by plotting them as points in performance vs. cost charts.
Here, the performance is measured by the best top-5 single-
crop accuracy obtained on the ILSVRC 2012 validation set;
while the cost is measured in two different ways, namely,
the run-time per iteration and the parameter size.

From the results, we can observe that replacing an In-
ception residual unit by a PolyInception module can al-
ways lead to performance gain, with increased computa-
tional cost. Whereas the general trend is that increasing the
computational complexity or parameter size can result in
better performance, the cost efficiencies of different module
structures are significantly different. For example, enhanc-
ing stage B is the most effective for performance improve-
ment. Particularly, for this stage, mpoly-3 appears to be the
best architectural choice for this purpose, while the runner-
up poly-3. It is, however, worth noting that the parameter
size of poly-3 is only 1/3 relative to that of mpoly-3. This
property can be very useful when the memory constraint is
tight. For the other two stages, A and C, the performance
gain is relatively smaller, and in these stages k-way perform
slightly better than mpoly and poly. Such observations can

provide useful guidance when designing a very deep net-
work using PolyInception modules.

3.3. Mixing Different PolyInception Designs

In the study above, we replace all Inception blocks in a
stage by PolyInception modules of certain configurations.
While the study reveals interesting differences between dif-
ferent stages, a question remains: what if we use PolyIn-
ceptions of different configs within a stage?

We conducted an ablation study to investigate this prob-
lem. This study uses a deeper network, IR 6-12-6, as the
baseline. This provides not only an opportunity to observe
the behaviors in a deeper context, but also a greater latitude
to explore different module compositions. Specifically, we
focus on stage B, as we observe empirically that this stage
has the greatest influence on the overall performance. Also,
focusing on one of the stages allows us to explore more con-
figurations given limited computational resources.

This study compares 5 configurations, namely, the base-
line IR 6-12-6, three uniform configs that respectively re-
place the Inception blocks with poly-3, mpoly-3, and 3-way,
and a mixed config. Particularly, the mixed config divides

3-way mpoly-3 poly-3 3-way mpoly-3 poly-3…

Figure 7: Mixed config interleaves 3-way, mpoly-3 and poly-3.

5

5.1

5.2

5.3

5.4

5.5

IR 6-12-6 mpoly-3 B 3-way B poly-3 B mixed B

To
p-

5
Er

ro
r

Figure 8: Performances of PolyNets on the 6-12-6 scale. y-axis
is the single crop top-5 error on the ILSVRC 2012 validation set.
The mixed structure uses (3-way→ mpoly-3→ poly-3) ×4 con-
figuration. We can see that the mixed structure is slightly better
than any of the three uniform configurations.

the 12 units in stage B into 4 groups, replacing each group
with a chain of PolyInception modules in three different
configs, as shown in Fig. 7. We denote this structure by
(3-way→ mpoly-3→ poly-3) ×4. Networks of all configs
are trained under the same settings (detailed in Section 4).

Figure 8 shows the comparative results. Again, we ob-
served that replacing Inception residual units with Poly-
Inception modules generally leads to notable performance
gains, and that poly-3 performs slightly better than the other
two. A more noteworthy observation is that the mixed config
outperforms all uniform configs by a considerable margin,
with a comparable computational cost. This clearly shows
that the benefit of enhanced structural diversity exists not
only within each module but also across modules.

3.4. Designing Very Deep PolyNet

With all the studies presented above, we set out to design
a very deep network, with an aim to take the state-of-the-art
performance of a single network to a next level. This design
follows the basic structure of the Inception ResNet-v2 [25],
which comprises a stem at the bottom, and three stages on
top that respectively operate on different spatial resolutions.
The output of stage C will be connected with the class label
via a fully connected layer and a softmax loss layer.

The objective of this design is to obtain optimal perfor-
mance under a given computational budget – the network
should be able to fit in a small cluster that contains 32 GPUs,
each with 12GB RAM, when being trained with a batch
size of 512. Towards this objective, we carefully chose
PolyInception modules or compositions thereof for each
stage, with multiple factors taken into consideration, e.g. the
balance between expressive power and cost, the structural
diversity, and the training difficulty. Besides, the communi-
cation costs, which is determined by parameter size, is also

important when training in a distributed environment.
At the end of the day, we obtain a final design, de-

scribed as follows. Stage A comprises 10 2-way PolyIn-
ception residual units, Stage B comprises 10 mixtures of
poly-3 and 2-way (20 modules in total), while Stage C com-
prises 5 mixtures of poly-3 and 2-way (10 modules in total).
Note that while we take the studies presented above as ref-
erences, some modifications are made to fit the network on
the GPUs, reduce the communication cost, and maintain a
sufficient depth. For example, we change the 3-way and
mpoly-3 modules used in the best-performing mixed struc-
ture in the study above to 2-way and poly-3.

4. Training PolyNets

We trained our networks on the training set of the
ILSVRC image classification benchmark [19], and evalu-
ated their performance on its validation set. The task is
to classify each given image to one of the 1000 categories.
Here, the training set contains about 1.28M images, while
the validation set contains 50K. Below, we describe the
technical settings in our training procedures.

Data augmentation. To improve the generalization perfor-
mance, we adopt the multi-area augmentation scheme pre-
sented in [26]. Specifically, for each training image, we
randomly generate a crop with the constraints that the crop
area ranges from 8% and 100% of the whole area and that
the aspect ratio is between 3/4 and 4/3. The crop is then
resized to a standard size 299 × 299 with bilinear interpo-
lation, and flipped horizontally with a chance of 50%. We
provide 331 × 331 input to the Very Deep PolyNet, which
is slightly larger.

Training settings. We use RMSProp [29] in our training,
with decay set to 0.9 and ε = 1.0. Batch normalization
is used following the settings in [25]. The learning rate is
initialized to 0.45, and will be scaled by a factor of 0.1 for
every 160K iterations. All training procedures were termi-
nated after 560K iterations – throughout the entire process,
the learning rate will be decreased by three times.

We train our models on servers with 8 Nvidia Titan X
GPUs, with all computation performed with 32-bit single
precision. Models of different scales are trained on different
numbers of nodes. All models based on IR 3-6-3, e.g., those
studied in Sec. 3.2, are trained on single nodes, using mini-
batches of size 256. Those based on IR 6-12-6, e.g., those
studied in Sec. 3.3, are trained on double-node clusters, us-
ing mini-batches of size 256. Very large models, includ-
ing ResNet-500, Very Deep Inception-ResNet, and the Very
Deep PolyNet as described in Sec. 3.4, are trained on four-
node clusters, using mini-batches of size 512. In all settings,
each mini-batch is evenly dispatched to all GPUs. Since
batch normalization is performed locally within each GPU,
the convergence rate and also the final performance would

�.043

�'�!

�

�43043

�.%'03+/.

'

�.%'03+/.

(

�.043

�'�!

�

�43043

�.%'03+/.

' -
-

����

����

-
-

�/,8��

�/,8��

�/,8��

�/,8��

Figure 9: Two examples to illustrate initialization-by-insertion.
Left: When replacing a residual unit by a PolyInception module,
we retain the parameters of the 1st-order block F , and randomly
initialize G, the newly inserted block. Right: When doubling the
depth of a network, we insert new units in an interleaved manner,
that is, inserting new units between original units. We found this
more effective than stacking all new units together.

be adversely affected if the number of samples assigned to
each GPU is too small. That’s why we use a larger batch
size when training on four-node clusters – this ensures that
each GPU processes at least 16 samples at each iteration.

Initialization. For very deep networks, random initializa-
tion may sometimes make the convergence slow and un-
stable. Initializing parts of the parameters from a smaller
pre-trained model has been shown to be an effective means
to address this issue in previous work [9, 21]. Inspired by
these efforts, we devise a strategy called initialization by
insertion to initialize very deep networks, as illustrated in
Fig. 9. We found that this strategy can often stabilize and
accelerate the training, especially in early iterations.

Residual scaling. As observed in [25], simply adding the
residuals with the input often leads to unstable training pro-
cesses. We observed the same and thus followed the prac-
tice in [25], namely, scaling the residual paths with a damp-
ening factor β before adding them to the module outputs.
Take 2-way for instance. This modification is equivalent to
changing the operator from I + F + G to I + βF + βG.
Particularly, we set β = 0.3 in our experiments.

Stochastic paths. Very deep networks tend to overfit in
later stage of training, even on data sets as large as Ima-
geNet. Strategies that randomly drop parts of the network,
such as Dropout [23], DropConnect [31], Drop-path [17],
and Stochastic Depth [13], have been shown to be effective
in countering the tendency of overfitting.

Inspired by such works, we introduce a technique called
stochastic paths, which randomly drop some of the paths
in each module with pre-defined probabilities, as illustrated
in Fig. 10. It is worth noting that the diverse ensemble im-
plicitly embedded in the PolyNet design is manifested here
– with random path dropping, a PolyInception module may
be turned into a smaller but distinct one. At each iteration, a
different sub-network that combines a highly diverse set of

�.043

�'�!

�

�43043

'

(

+
×

× &
&

&

�.043

�'�!

�

�43043

' (+

× &&&

Figure 10: Examples of stochastic paths. A PolyInception mod-
ule will be converted into a smaller but distinct one when some
paths are dropped. Left: from I + F +GF +HGF to I +GF .
Right: from I + F +G+H to I +G+H .

modules will be made visible to the training algorithm and
the associated parameters updated accordingly. This way
can reduce the co-adaptation effect among components, and
thus result in better generalization performance.

Note that we found that applying stochastic paths too
early can hinder the convergence. In our training, we do this
adaptively – activating this strategy only when serious over-
fitting is observed, where the dropping probabilities from
bottom to top are increased linearly from 0 to 0.25.

5. Overall Comparison

We compared our Very Deep PolyNet (Sec. 3.4) with
various existing state-of-the-art architectures. It is worth
noting that the computation cost of the Very Deep PolyNet
is significantly larger than Inception-ResNet-v2 or the deep-
est version of publicly available ResNet, namely ResNet-
200 by Facebook. To get a persuasive comparison, we built
a Very Deep Inception-ResNet by stacking more residual
units in Inception-ResNet-v22 with 20, 56, 20 units respec-
tively in stages A, B, and C. We also extended the ResNet
to ResNet-269 and ResNet-500. The Very Deep Inception-
ResNet and the ResNet-500 both have similar computation
costs to our Very Deep PolyNet. We evaluate both single
crop and multi-crop classification errors of these models on
the whole ILSVRC 2012 validation set.

The multi-crop evaluation we carried out was based on
top-k pooling [32]. Specifically, we generated crops as de-
scribed in [26], using 8 scales and 36 crops for each scale.
Then we did top-30% pooling in each scale, i.e. averaging
the top 30% scores among crops for each class indepen-
dently, and finally averaged scores across all 8 scales.

We first examine Fig. 11. In this experiment, we grad-
ually scaled the original Inception-ResNet-v2 from IR 5-

2We did not use auxiliary loss or label-smoothing regularization as
in [25, 27]. This leads to a small gap (0.2% for top-5 accuracy) between
our implementation and that reported in [25]. To ensure fair comparisons,
all results reported in this paper, except some items Table 1, are based on
our own implementations.

Table 1: Single model performance with single crop and multi-crop evaluation on ILSVRC 2012 validation set and test set.
† indicates that the model was trained by us. Error rate followed by ‡means that it was evaluated on the non-blacklisted subset of validation
set [25], which may lead to slightly optimistic results.

Network
Single-crop on validation set Single-crop on test set Multi-crop on validation set

Top 1 Error (%) Top 5 Error (%) Top 5 Error (%) Top 1 Error (%) Top 5 Error (%)
ResNet-152 [9] 22.16 6.16 - 19.38 4.49
ResNet-152† 20.93 5.54 5.50 18.50 3.97
ResNet-269† 19.78 4.89 4.82 17.54 3.55
ResNet-500† 19.66 4.78 4.70 17.59 3.63
Inception-v4 [25] 20.0 ‡ 5.0 ‡ - 17.7 3.8
Inception-ResNet-v2 [25] 19.9 ‡ 4.9 ‡ - 17.8 3.7
Inception-ResNet-v2† 20.05 5.05 5.11 18.41 3.98
Very Deep Inception-ResNet† 19.10 4.48 4.46 17.39 3.56
Very Deep PolyNet† 18.71 4.25 4.33 17.36 3.45

3-6-3 2way

3-6-3 3way

6-12-6 mix B

10-20-10 mix

IR 5-10-5

IR 10-20-10

IR 6-36-6
IR 20-56-20

ResNet 152

ResNet 269

ResNet 500

94.2%

94.5%

94.8%

95.1%

95.4%

95.7%

96.0%

0 2000 4000 6000 8000 10000

To
p-

5
A

cc
ur

ac
y

Nodes * Time (ms) / Iter

PolyNet
Inception-ResNet-v2
ResNet

Figure 11: With PolyInception, large performance gain can still
be observed on very deep network. The results suggest that struc-
tural diversity scales better than a mere deeper network.

10-5 to the Very Deep Inception-ResNet denoted as IR
20-56-20. The top-5 accuracies of these models are plot-
ted. We similarly plotted a curve that depicts the perfor-
mance of our model of varying complexity, from PolyNet
3-6-3 with 2-way structure to the final Very Deep PolyNet
with mixed config. Note that we applied adaptive stochas-
tic depth (Sec. 4) to ameliorate overfitting for very deep
models. Fig. 11 shows several important observations: (1)
Deeper structure is more desirable when the computational
budget is limited (below 3000 ms/iter in Figure 11). (2) As
the budget increases, the gain of structural diversity grows
more rapidly. Particularly, beyond 4000 ms/iter, structural
diversity could bring larger performance gain to very deep
network given the same computational budget, as compared
to simply stacking more units. (3) The architectures with
Inception blocks generally perform better than the standard
ResNet architectures (stacks of 3 × 3 convolutional layers)
under the same computational budget. This also partly cor-
roborates the significance of structural diversity. Overall,
these observations reveal the complementary roles of the

depth and structural diversity, which could facilitate future
deep architectural design.

Table 1 summarizes the top-1 and top-5 errors of
single/multi-crop evaluations. It shows that the proposed
Very Deep PolyNet not only outperforms state-of-the-art
ResNet and Inception-ResNet-v2, but also their very deep
variants, in both the validation and test sets of ImageNet.
In particular, we obtain top-5 error rates 4.25% and 3.45%,
respectively on the single/multi-crop settings on the valida-
tion set, and 4.33% on the single-crop setting on the test set.
This improvement is notable compared to the best published
single-network performance obtained by IR-v2, i.e. 4.9%
and 3.7% on single-crop and multi-crop settings. It is also
worth noting that the multi-crop performance of ResNet-
500 is slightly lower than ResNet-269. This shows that
deepening the network without enhancing structural diver-
sity may not necessarily lead to positive gains.

6. Conclusion
In this paper, we explore a novel direction, structural di-

versity, to design deep networks. On this direction, we pro-
posed a family of modules named PolyInception to extend
residual style networks. We conducted systematic experi-
ments to explore the behavior of PolyInception. Based on
these studies, we designed a Very Deep PolyNet. The model
outperforms Inception-ResNet-v2, the state of the art, and
even its deeper variants. Our study shows that enhancing
structural diversity along with going deep can lead to fur-
ther performance improvements.

Acknowledgements This work is partially supported by the
SenseTime Group Limited, the Hong Kong Innovation and Tech-
nology Support Programme, and Early Career Scheme (ECS)
grant (No. 24204215). The authors would also like to thank all
the members of the CU-DeepLink [4] Team for the hard work in
the ImageNet 2016 competition. Special thanks goes to Tong Xiao
for providing trained ResNets.

References
[1] M. Abdi and S. Nahavandi. Multi-residual networks. arXiv

preprint arXiv:1609.05672, 2016.
[2] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term

dependencies with gradient descent is difficult. IEEE trans-
actions on neural networks, 5(2):157–166, 1994.

[3] L. Breiman. Bagging predictors. Machine learning,
24(2):123–140, 1996.

[4] CU-DeepLink Team. PolyNet: A novel design of ultra-
deep networks. http://mmlab.ie.cuhk.edu.hk/
projects/cu_deeplink. Accessed: 2016-11-11.

[5] Y. Freund. Boosting a weak learning algorithm by majority.
In COLT, volume 90, pages 202–216, 1990.

[6] X. Glorot and Y. Bengio. Understanding the difficulty of
training deep feedforward neural networks. In Aistats, vol-
ume 9, pages 249–256, 2010.

[7] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier
neural networks. In Aistats, volume 15, page 275, 2011.

[8] K. He and J. Sun. Convolutional neural networks at con-
strained time cost. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5353–
5360, 2015.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016.

[10] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in
deep residual networks. In ECCV (4), volume 9908 of Lec-
ture Notes in Computer Science, pages 630–645. Springer,
2016.

[11] T. K. Ho. The random subspace method for constructing
decision forests. IEEE transactions on pattern analysis and
machine intelligence, 20(8):832–844, 1998.

[12] G. Huang, Z. Liu, and K. Q. Weinberger. Densely connected
convolutional networks. arXiv preprint arXiv:1608.06993,
2016.

[13] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger.
Deep networks with stochastic depth. In ECCV (4), volume
9908 of Lecture Notes in Computer Science, pages 646–661.
Springer, 2016.

[14] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
ICML, volume 37 of JMLR Workshop and Conference Pro-
ceedings, pages 448–456. JMLR.org, 2015.

[15] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hin-
ton. Adaptive mixtures of local experts. Neural computation,
3(1):79–87, 1991.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012.

[17] G. Larsson, M. Maire, and G. Shakhnarovich. Fractalnet:
Ultra-deep neural networks without residuals. arXiv preprint
arXiv:1605.07648, 2016.

[18] D. Mishkin, N. Sergievskiy, and J. Matas. Systematic eval-
uation of cnn advances on the imagenet. arXiv preprint
arXiv:1606.02228, 2016.

[19] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015.

[20] R. E. Schapire. The strength of weak learnability. Machine
learning, 5(2):197–227, 1990.

[21] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[22] S. Singh, D. Hoiem, and D. Forsyth. Swapout: Learn-
ing an ensemble of deep architectures. arXiv preprint
arXiv:1605.06465, 2016.

[23] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: a simple way to prevent neu-
ral networks from overfitting. Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

[24] R. K. Srivastava, K. Greff, and J. Schmidhuber. Training
very deep networks. In Advances in neural information pro-
cessing systems, pages 2377–2385, 2015.

[25] C. Szegedy, S. Ioffe, and V. Vanhoucke. Inception-v4,
inception-resnet and the impact of residual connections on
learning. arXiv preprint arXiv:1602.07261, 2016.

[26] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1–9, 2015.

[27] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the inception architecture for computer vision.
arXiv preprint arXiv:1512.00567, 2015.

[28] S. Targ, D. Almeida, and K. Lyman. Resnet in
resnet: Generalizing residual architectures. arXiv preprint
arXiv:1603.08029, 2016.

[29] T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Di-
vide the gradient by a running average of its recent magni-
tude. COURSERA: Neural Networks for Machine Learning,
2012.

[30] A. Veit, M. Wilber, and S. Belongie. Residual networks are
exponential ensembles of relatively shallow networks. arXiv
preprint arXiv:1605.06431, 2016.

[31] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus. Reg-
ularization of neural networks using dropconnect. In Pro-
ceedings of the 30th International Conference on Machine
Learning (ICML-13), pages 1058–1066, 2013.

[32] Y. Xiong, L. Wang, Z. Wang, B. Zhang, H. Song, W. Li,
D. Lin, Y. Qiao, L. Van Gool, and X. Tang. CUHK & ETHZ
& SIAT submission to ActivityNet challenge 2016. arXiv
preprint arXiv:1608.00797, 2016.

[33] S. Zagoruyko and N. Komodakis. Wide residual networks.
arXiv preprint arXiv:1605.07146, 2016.

[34] K. Zhang, M. Sun, T. X. Han, X. Yuan, L. Guo, and T. Liu.
Residual networks of residual networks: Multilevel residual
networks. arXiv preprint arXiv:1608.02908, 2016.

